Rajeev Piyare, Timofei Istomin, Amy L. Murphy
Proceedings of the 14th International Conference on Embedded Wireless Systems and Networks (EWSN 2017), Uppsala, Sweden, February 2017.
Publication year: 2017

Abstract

Radio communication remains the primary battery consuming activity in wireless systems. Advances in MAC protocols have enabled significant lifetime improvements, but in systems with low data rate, idle listening, and other communication artifacts can begin to dominate costs. One proposal to combat this is the addition of a second, extremely low power radio component that is always-on. As a consequence of the extremely low power, such radios are incapable of decoding general data, and thus are often delegated the task of listening for a trigger, leading to the terminology wake-up radio, as this extremely low power radio is used to wake up a higher power radio, which is then used for data communication. While wake-up technology has been steadily evolving over the last decade in the hardware arena, few protocols have been developed to exploit it. In this work, we present WaCo, our wake-up radio COOJA extension that allows exploration of the capabilities of the wake-up radio from the desktop environment. We also use our extended simulator to concretely show the potential benefits of the wake-up radio hardware with two, standard data collection protocols. Our results simultaneously confirm that wake-up technology has tremendous potential and that our simulator extension provides an effective mechanism for such exploration.