WaCo: A Wake-Up Radio COOJA Extension for Simulating Ultra Low Power Radios

Conference paper
Rajeev Piyare, Timofei Istomin, Amy L. Murphy
Proceedings of the 14th International Conference on Embedded Wireless Systems and Networks (EWSN 2017), Uppsala, Sweden, February 2017.
Publication year: 2017

Abstract

Radio communication remains the primary battery consuming activity in wireless systems. Advances in MAC protocols have enabled significant lifetime improvements, but in systems with low data rate, idle listening, and other communication artifacts can begin to dominate costs. One proposal to combat this is the addition of a second, extremely low power radio component that is always-on. As a consequence of the extremely low power, such radios are incapable of decoding general data, and thus are often delegated the task of listening for a trigger, leading to the terminology wake-up radio, as this extremely low power radio is used to wake up a higher power radio, which is then used for data communication. While wake-up technology has been steadily evolving over the last decade in the hardware arena, few protocols have been developed to exploit it. In this work, we present WaCo, our wake-up radio COOJA extension that allows exploration of the capabilities of the wake-up radio from the desktop environment. We also use our extended simulator to concretely show the potential benefits of the wake-up radio hardware with two, standard data collection protocols. Our results simultaneously confirm that wake-up technology has tremendous potential and that our simulator extension provides an effective mechanism for such exploration.

Ultra Low Power Wake-Up Radios: A Hardware and Networking Survey

Journal paper
Rajeev Piyare, Amy L.Murphy, Csaba Kiraly, Pietro Tosato and Davide Brunelli
Publication year: 2017

Abstract

In wireless environments, transmission and reception costs dominate system power consumption, motivating research effort on new technologies capable of reducing the footprint of the radio, paving the way for the Internet of Things. The most important challenge is to reduce power consumption when receivers are idle, the so called idle-listening cost. One approach proposes switching off the main receiver, then introduces new wake-up circuitry capable of detecting an incoming transmission, discriminating the packet destination using addressing, then switching on the main radio only when required. This wake- up receiver (WuRx) technology represents the ultimate frontier in low power radio communication. In this paper, we present a comprehensive literature review of the research progress in wake-up radio (WuR) hardware and relevant networking software. First, we present an overview of the WuR system architecture, including challenges to hardware design and a comparison of solutions presented throughout the last decade. Next, we present various Medium Access Control (MAC) and routing protocols as well as diverse ways to exploit WuRs, both as an extension of pre-existing protocols and as a new concept to manage low-power networking.

Plug into a Plant: Using a Plant Microbial Fuel Cell and a Wake-up Radio for an Energy Neutral Sensing System

Conference paper
Rajeev Piyare, Amy L. Murphy, Pietro Tosato, and Davide Brunelli
Publication year: 2017

Abstract

As a step toward sustainable wireless sensing, we present a proof of concept system that uses a Plant Microbial Fuel Cells (PMFC) as a power source. To match the very low power production capabilities of the PMFC, we couple it with an ultra-low power wake-up receiver used as a trigger for sampling and transmission of the sensed value. We demonstrate that this combination, with a new, receiver initiated MAC-level communication protocol, results in a sustainable system for reasonable data rates, shown to be 30s in our laboratory setting. This work offers the first steps toward large-scale wireless sensor networks in applications where the sensors are surrounded by living plants that can provide a green and perpetual power supply.

Utilizing Smartphone Sensors for Daily Physical Activity Recognition

Conference paper
Rajeev Piyare, Seong Ro Lee
The 10th International Conference on Multimedia Information Technology and Applications (MITA 2014), 9th-10th July, Hong Kong University of Science and Technology, Hong Kong
Publication year: 2014

Abstract

Smartphones with built-in sensors promise a conducive, objective way to quantify everyday body movements and classify those movements into activities. Utilizing smartphone accelerometer data we estimate the following daily activities performed by the user: walking, jogging, using stairs, sitting, standing and lying down. The proposal is tested experimentally via evaluations on real data obtained from 50 test users. The evaluation indicates that the J48 classifier using a window size of 512 samples with 50% overlapping yields the highest accuracy (i.e., up to 96.02%).

Mobile Sensing Platform for Personal Health Management

Conference paper
Rajeev Piyare, Seong Ro Lee
18th IEEE International Symposium on Consumer Electronics, 22nd-25th June, Jeju, South Korea
Publication year: 2014

Dynamic Activity Recognition using Smartphone Sensor Data

Conference paper
Rajeev Piyare, Seong Ro Lee
1st International Electronics Conference on Sensors and Applications, 1-16th June, Sciforum Electronic Conference Series, Vol. 1
Publication year: 2014

Abstract

Smartphones equipped with various sensors provide sufficient sensor data and computation power to enable daily activity detection for applications such as u-healthcare, elderly monitoring, sports coaching and entertainment. Instead of applying multiple sensor devices, as observed in many previous investigations, this work proposes the use of a smartphone with its built-in accelerometer as an unobtrusive sensor device for real-time activity recognition of basic daily activities. The proposal is tested experimentally through evaluations on real data collected from 50 participants. A prototype application is developed to demonstrate and evaluate the selected classification methods for the designated recognition tasks. The results indicate that the J48 classifier using a window size of 512 samples with 50% overlapping obtained the highest accuracy (i.e., up to 96.02%). To measure the actual classification accuracy, a 5×10-fold cross-validation with different random seeds was performed on the dataset using WEKA. Finally, to determine whether a classifier is superior to another, 5×2 fold cross validation along with a paired t-test was subsequently performed on the results using J48 as the baseline scheme with the other classification algorithms being compared to it. A value of p<0.05 was considered statistically significant.

Activity Recognition using Smartphone low level sensor data

Conference paper
Rajeev Piyare, Seong Ro Lee
2014 International Conference on Future Information and Communication Engineering (ICFICE 2014), 26th-28th June, Kowloon, Hong Kong
Publication year: 2014

Abstract

Smartphones with built-in sensors promise a convenient, objective way to evaluate everyday movements and recognize those movements into activities. Using accelerometer as a low-level sensor data we estimate the following daily activities performed by the user: walking, jogging, walking up stairs, walking down stairs, sitting and standing. Among five common machines learning algorithms: Decision Tree (J48), Naïve Bayes (NB), Support Vector Machines (SVM), Neural Network (NN), and Logistic Regression. NN classifier was found to be the best choice with the classification accuracy of more than 95%. It is shown that this method is appropriate and that the phone’s orientation information is not needed.

Activity Recognition of Workers and Passengers onboard Ships Using Multimodal Sensors in a Smartphone

Journal paper
Rajeev Piyare, Seong Ro Lee
The Journal of Korea Information and Communications Society vol.39, Issue 9, pp.811-819
Publication year: 2014

Abstract

Activity recognition is a key component in identifying the context of a user for providing services based on the application such as medical, entertainment and tactical scenarios. Instead of applying numerous sensor devices, as observed in many previous investigations, we are proposing the use of the smartphone with its built-in multimodal sensors as an unobtrusive sensor device for recognition of six physical daily activities. As an improvement to previous works, accelerometer, gyroscope and magnetometer data are fused to recognize activities more reliably. The evaluation indicates that the IBK classifier using the window size of 2s with 50% overlapping yields the highest accuracy (i.e., up to 99.33%). To achieve this peak accuracy, simple time-domain, and frequency-domain features were extracted from raw sensor data of the smartphone.

Internet of Things: Ubiquitous Home Control and Monitoring System using Android based Smart Phone

Journal paper
Rajeev Piyare
International Journal of Internet of Things, vol.2, pp.5-11
Publication year: 2013

Abstract

This paper presents a low cost and flexible home control and monitoring system using an embedded micro-web server, with IP connectivity for accessing and controlling devices and appliances remotely using Android based Smartphone app. The proposed system does not require a dedicated server PC with respect to similar systems and offers a novel communication protocol to monitor and control the home environment with more than just the switching functionality. To demonstrate the feasibility and effectiveness of this system, devices such as light switches, power plug, temperature sensor and current sensor have been integrated with the proposed home control system.

u-Healthcare Monitoring and Reporting using Smartphone

Conference paper
Rajeev Piyare, Seong Ro Lee
The Institute of Electronics Engineers Fall 2013 General Conference, pp.846-848
Publication year: 2013

Towards Internet of Things (IOTS):Integration of Wireless Sensor Network to Cloud Services for Data Collection and Sharing

Journal paper
Rajeev Piyare, Seong Ro Lee
International Journal of Computer Networks and Communications, vol.5, No.5, September
Publication year: 2013

Abstract

Cloud computing provides great benefits for applications hosted on the Web that also has special computational and storage requirements. This paper proposes an extensible and flexible architecture for integrating Wireless Sensor Networks with the Cloud. We have used REST-based Web services as an interoperable application layer that can be directly integrated into other application domains for remote monitoring such as e-health care services, smart homes, or even vehicular area networks (VAN). For proof of concept, we have implemented a REST-based Web services on an IP-based low power WSN test bed, which enables data access from anywhere. The alert feature has also been implemented to notify users via email or tweets for monitoring data when they exceed values and events of interest.

Smart Home-Control and Monitoring System Using Smart Phone

Conference paper
Rajeev Piyare, Seong Ro Lee
International Conference, ICCA 2013, Korea University, Seoul Korea, July
Publication year: 2013

Abstract

This paper presents a low cost and flexible home control and monitoring system using an embedded micro-web server, with IP connectivity for accessing and controlling devices and appliances remotely using Android based Smart phone app. The proposed system does not require a dedicated server PC with respect to similar systems and offers a novel communication protocol to monitor and control the home environment with more than just the switching functionality.

Performance Analysis of XBee ZB Module Based Wireless Sensor Networks

Journal paper
Rajeev Piyare, Seong Ro Lee
International Journal of Scientific and Engineering Research, vol. 4, pp.1615-1621
Publication year: 2013

Abstract

In this paper, performance analysis of ZigBee networks based on XBee ZB modules have been evaluated in terms of following performance metrics: received signal strength (RSSI), network throughput, packet delay, mesh routing recovery time and energy consumption in an indoor environment. Two main groups of network scenarios have been evaluated: (i) direct transmissions between the coordinator and the remote nodes, and (ii) transmissions with routers which relay the packet between the coordinator and the remote nodes. The wireless sensor node hardware designed for this experimentation consists of ZigBee (XBee S2 with 2mW wire antenna) wireless communication module from Digi International. X-CTU software is utilized for configuring and testing the ZigBee module of each sensor node. After configuration, the entire network is simulated in real time using Docklight V2.0 software. The results of this study are useful for building Wireless Home Area Network (WHAN) using the ZigBee where there are reflections due to indoor objects and also for scenarios where communication between nodes require multi-hop transmissions.

Integrating Wireless Sensor Network into Cloud services for real-time data collection

Conference paper
Rajeev Piyare, Seong Ro Lee
ICT Convergence (ICTC), 2013 International Conference on. IEEE, 14th-16th October,Jeju, South Korea
Publication year: 2013

Abstract

This paper presents an extensible and flexible architecture for integrating Wireless Sensor Networks with the Cloud. REST-based Web services is used as an interoperable application layer that can be directly integrated into other application domains for remote monitoring such as e-health care services and smart environments. For proof of concept, we have set up a REST-based Web services on an IP-based low power WSN testbed, which enables data accessibility from anywhere. The alert feature has also been implemented to notify users via email or tweets for monitoring data when they exceed values and events of interest.

Wireless Control of An Automated Guided Vehicle

Conference paper
Rajeev Piyare, Ravinesh Singh
2011 International MultiConference of Engineers and Computer Scientists (IMECS), 16th-18th March, Hong Kong
Publication year: 2011

Abstract

This paper represents the design, implementation, and experimental results of a Radio Frequency (RF) based wireless control of a distributed Peripheral Interface Controller (PIC) microcontroller based Automated Guided Vehicle (AGV), which is known as ROVER II (Roaming Vehicle for Entity Relocation). ROVER II was designed in-house as a general purpose guide path following mobile platform for material handling and transportation within a manufacturing facility.

Bluetooth based home automation system using cell phone

Conference paper
Rajeev Piyare, M. Tazil
15th IEEE International Symposium on Consumer Electronics, 14th-17th June, Singapore
Publication year: 2011

Abstract

Technology is a never ending process. To be able to design a product using the current technology that will be beneficial to the lives of others is a huge contribution to the community. This paper presents the design and implementation of a low cost but yet flexible and secure cell phone based home automation system. The design is based on a stand alone Arduino BT board and the home appliances are connected to the input/ output ports of this board via relays. The communication between the cell phone and the Arduino BT board is wireless. This system is designed to be low cost and scalable allowing variety of devices to be controlled with minimum changes to its core. Password protection is being used to only allow authorised users from accessing the appliances at home.